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Adaptive grid finite difference methods for computing time-accurate solutions of nonlinear 
hyperbolic conservation laws in one space dimension are studied. The basic approach is to 
decouple the determination of the moving grid from the solution of the differential equation on 
the moving grid. The grid is determined by an elliptic grid generation technique suitably 
modified for time-accurate computations. Two methods, Godunov’s scheme and an artificial 
viscosity method, are used to discretize the differential equation. The technique is applied to 
problems involving the Buckley-Leverett equation modelling the flow of two immiscible fluids 
in a porous medium. Substantial improvement in computational efftciency is obtained by 
using the adaptive grid technique. Extensions of this approach to several space dimensions 
and systems of equations are discussed. 

1. INTRODUCTION 

In this paper we consider adaptive grid finite difference methods for obtaining 
time-accurate solutions of hyperbolic conservation laws characteristic of the flow of 
immiscible fluids in porous media. In particular we consider the single equation 

u, +f, = 0, O<x<l,t>O (l.la) 

subject to the initial and boundary conditions 

4% 0) = %(X) (Lib) 

@, t> = g(t). (Llc) 

The flux function f(u) will be assumed to be C’. For cases of interest in porous 
media flowf(u) is usually not convex. 

Since equations of the form of (1. la) can develop discontinous solutions from 
smooth initial data it is necessary to recast (l.la) into a “weak” or integrated form 
(cf. [ 1 I). However, the weak solution is not unique, so to obtain the correct physical 
solution (representing the limit as diffusion vanishes) one must also impose an 
entropy condition such as the E-condition of Oleinik [2]. 
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The nonconvexity of the flux functions found in two-phase immiscible flow in 
porous media raises serious difficulties in obtaining accurate numerical solutions to 
(1.1) on relatively coarse grids. Harten, Wyman and Lax [ 3 ] show that nonmonotone 
schemes such as Lax-Wendroff can converge to nonentropy satisfying solutions for 
nonconvex fluxes. Alternatively, monotone schemes are inherently first-order accurate 
and thus excessively smear out discontinuities. Some theoretical work of LeRoux [ 4 ] 
and Douglas [5] suggests that a first-order numerical diffusion term (of magnitude 
comparable to that inherent in upwind schemes) must be present in order to 
guarantee convergence of the numerical solution to the correct physical solution. 

Seemingly, to prevent spurious weak solutions from arising one must resort to a 
first-order finite difference method. Recent work on higher-order methods for gas 
dynamics [6, 71 suggest that requiring monotone schemes is not necessary and that 
first-order diffusion is only needed locally near discontinuities. Preliminary work on 
adapting these methods for nonconvex flux functions appears promising but will be 
considered elsewhere (see [8]). An alternative to using complicated finite difference 
schemes to obtain increased accuracy is to allow the finite difference grid to adapt in 
time, placing more grid points in regions of rapid spatial changes in the solution. The 
clustering of grid points around sharp changes in the solution should reduce the 
smearing caused by the inherent numerical diffusion in first-order monotone schemes. 

Many investigators have successfully applied adaptive grid methods to the solution 
of ordinary differential equations. The use of adaptive grid refinement for multidimen- 
sional elliptic boundary value problems has received considerable attention in the 
finite element literature (e.g., [9-121). Treatment of time-dependent problems has 
been primarily limited to “time-asymptotic” methods for solving steady problems in 
which temporal accuracy is unimportant (e.g. [ 13-151). 

Recently some work has appeared on truly time-dependent adaptive grid methods 
(e.g. [ 16-201). Of particular note is the moving finite element method [ 21-241, which 
yields good results in one space dimension. Unfortunately, in this method the grid 
motion is implicitly coupled to the solution of the equation (except see 1251) so that 
in several space dimensions an extremely large linear system must be solved at each 
time step. 

For reasons of computational simplicity we consider an adaptive grid finite 
difference method in which the grid motion is decoupled from the solution of the 
partial differential equation on the moving grid. Our approach is based on a 
modification of elliptic grid generation techniques (see Thompson [26, 271 for a 
survey of this field, and Brackbill and Saltzman [28, 291 for the development of 
adaptive elliptic grid generation). The idea behind elliptic grid generation is to 
numerically compute a transformation from a computational rectangle to the physical 
domain so that the image of a uniform grid on the rectangle produces the nonuniform 
grid in the physical domain. When applied in multiple dimensions, this method 
produces grids in which the number of grid points remains fixed for all time, and the 
grids are always “logically rectangular.” These desirable features obviate the need for 
the complicated data structures and computational logic involved in grids that are not 
logically rectangular. For the present one-dimensional problem, these features simply 
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imply that the initial ordering of the grid points remains fixed for all time; we never 
remove grid points from one location and reinsert them elsewhere. 

In the next section we discuss in some detail the use of grid generation for time- 
dependent problems, in particular the modifications of the elliptic grid generation 
technique that we have made in order to obtain a smooth time evolution of the grid. 

Solving the differential equation on a moving grid introduces some subtle 
difficulties for nonconvex flux functions. In particular, “upwind” schemes of various 
sorts become ambiguous in this setting. Section 3 addresses this issue and discusses 
two schemes that successfully treat these problems. 

In Section 4 we present numerical results that illustrate several features of grid 
generation and corresponding solution techniques. 

2. METHOD FOR DETERMINING THE MOVING GRID 

In this section we discuss issues concerning the extension of elliptic grid generation 
techniques to truly time-dependent problems. The goal is to construct a moving grid 
in the physical space (x, t); see Fig. la. To this end we consider a mapping 

r = a-% t> 
t=t (2.1) 

to a computational (<, t) space in which the grid lines are equally spaced and t- 
independent; see Fig. lb. The grid will be generated by numerically determining the 
transformation at time t + At from the transformation at time t and the solution at 
time t. 

The usual approach is to construct an equation to determine t(x); this results in a 
nonlinear elliptic equation that determines the transformation [27-291. We are more 
inclined to directly determine the inverse mapping x(r) as the solution of a linear 
elliptic system. In two and three dimensions such an approach has been used for 

physical space computational space 

t T 

lakz .!!ilBi 
0 1 0 4 1 

J=l 2 J m m  

FIGURE 1 
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nonadaptive grid generation where biharmonic equations determine the transfor- 
mation [30, 3 11. In general, this approach sacrifices a maximum principle (which 
prevents grid overlapping) in favor of computational simplicity. In the present context 
the impetus for a fourth-order system is missing; we therefore construct a second- 
order linear equation to determine the transformation. Here, we are able to obtain a 
maximum principle. Indeed, for time-dependent problems in several space dimensions 
the computational savings associated with having linear equations will be reduced 
and methods satisfying a maximum principle may have more appeal. 

Following the variational formulation of elliptic grid generation [29], we seek to 
minimize 

where A, and 1, are parameters, w(c) is a clustering function scaled to that 
0 < w(r) < 1, and x: is the value of xi from the previous time step. To understand 
(2.2) we may think of x[ as dx/&. The first term of (2.2) attempts to equidistribute 
the grid size dx since the minimum value of this term is obained for a uniform grid. 
The second term attempts to make dx small where the clustering function w is large. 
The third term keeps the grid from changing too rapidly in time. This is desirable for 
computational accuracy and for maximizing the allowable time step, as discussed 
later. The choice of ;1, and 2, determines the relative emphases given to these effects, 
In order to numerically determine x(r) we first find the Euler equation for (2.2), 

(1 +l,w+~b)Xlf+~aWIXg-~bX~=O. (2.3) 

Replacing (2.3) with a finite difference scheme and using the boundary conditions 
x, = 0 and x~,,,,~ = 1 yields a tridiagonal linear system to determine the new grid 
point locations. (While we use a simple centered scheme for (2.3) if drastic grid 
motion is anticipated it would be better to use another scheme which numerically 
preserves the maximum principle.) 

Although we choose to solve (2.3) numerically (and in more general multidimen- 
sional problems one must do so), it is possible to directly integrate (2.3) to give 

(2.4) 

Here k is chosen so that x(< = 1) = 1. It can easily be seen that k > 0; hence x(r) is a 
monotone function and a maximum principle holds. (We again note that the 
maximum principle only pertains to the one-dimensional case; in higher dimensions 
the maximum principle is lost.) Since the local grid spacing Ax = x,A( is A< times the 
integrand of (2.4), the way that parameters J., and Ab affect the grid can be seen by 
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examining this integrand. Taking the case Lb = 0 (no grid smoothing in time), we 
obtain the local grid spacing 

so that the grid, as expected, equidistributes 1 + 1,~. Note that indefinitely increasing 
L, will not result in increasingly finer grid spacing where w is a maximum; instead it 
is necessary to alter the clustering function w to more sharply discriminate where 
small Ax’s are required. In the case L, = 0 (no clustering in space), we get 

Ax = At + &Ax* 
1 +A, 

corresponding to a combination of smoothing in space and in time (Ax* is the grid 
spacing at the previous time step). 

We now discuss some aspects of the clustering function w(c). We want w to be 
large where small grid size Ax is desired. A frequently used technique in adaptive grid 
methods is to try to equidistribute some measure of the error in the computed 
solution. However, since the choice of an appropriate error measure depends on the 
solution method, we postpone discussion of the specific choice of w to the fourth 
section. 

Due to our basic approach, we are determining the grid at time t”+ ’ from the 
solution at time t”. To allow the grid to “anticipate” shock motion, it is desirable to 
smear out w(r) by making several (we use three) passes of smoothing wherein wi is 
replaced by (wj- i + 2wj + w,~+ ,)/4. 

3. METHODS FOR SOLVING THE CONSERVATION LAW ON A MOVING GRID 

Certain subtleties arise in solving the differential equation (1.1) on a moving grid 
when the flux function is not convex. The problem is caused by the possible 
ambiguity of the “upwind” direction. For example, the wave speeds corresponding to 
the solution values on two adjacent intervals may both be positive while the 
interaction between these two states can generate waves that propagate with negative 
speeds. In this type of situation it becomes impossible to apply standard upwind 
switching difference schemes. The most natural way to overcome these problems is to 
directly apply Godunov’s method [32] in the moving physical domain. Since the 
extension of Godunov’s scheme to multiple dimensions is rather uncertain we also 
consider an artificial diffusion scheme applied to the equation in the transformed 
computational domain. 

We assume that the new grid has been determined at time Pi’ and that we now 
wish to advance the solution of (l.la) from t” to t nt’ Consider the region R shown . 
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in Fig. 2 whose boundaries are the moving grid lines. The approximation of ( 1.1 a) in 
f2 is given by 

0-j-p * i;)dtdX=~~*(Unt+P,)dS (3.1) 

where V . is the t - x divergence and n is the unit outer normal to R. Rearranging we 
find that 

i 
4:: 

u dx = I 
xjnt 1 

u dx + 
X?+’ I xi” 

jtr+’ [ f(uL) - u, [ “+;; “I] dt 

(3.2) 

where u, and u, are the values of u along the left and right boundaries, respectively. 
At time t” the approximate solution is represented by piecewise constants, i.e., 

u = u;+ l/Z for xj” < x < xj”+ , . 

Using this approximation, u, and u, are constants that can be determined by solving 
a Riemann problem. In particular, at x7 we solve the Riemann problem for a left 
state of ~jn_,,~ and the right state is uJ+,,* and evaluate the similarity solution at 

x-x; _ (xj”“‘-xj”) -- 
t-t” At 

Using this form, and making a suitable restriction on time step to ensure that the 
Riemann solution at one interface does not interact with adjacent boundaries, we see 

At 

FIGURE 2 
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that (3.2) corresponds to solving (l.la) with piecewise constant initial data and 
replacing the solution at t”+’ by the average 

We note that for the Buckley-Leverett flux function considered in Section 4 the 
Riemann problem solution can be found in [33]. (Note that the solution there 
contains an error for the case where the left and right states lie on opposite sides of 
an inflection point off(u), but it is easily corrected.) 

We next consider a time step selection method in the spirit of the 
Courant-Friedrichs-Levy (CFL) condition. We want to determine At so that no wave 
arising from the Riemann problem solution centered at xy can reach the grid lines 
(xj”-, , x,;?:) or (x,1+ I, xj”,‘, ) in the time step At. This means that we require 

x; + At s,,, < xj”,‘, 

and 

xj” + At s,,,~” > x,;f, 

where s,,, and s,,,~” are the largest and smallest wave speeds in the Riemann solution 
at XT. We define CFL = 1 to be the largest At for which these inequalities hold. 

We note that for a single equation this time step selection algorithm has an 
interesting effect. The adaptive grid method will place the smallest grid spacing near 
shock waves and larger spacings elsewhere. One would tend to suspect that the 
presence of these small intervals would substantially restrict the time step. However, 
near the shock the grid lines tend to essentially follow the shock as do the waves 
generated by the Riemann interaction. This has the effect of increasing the maximum 
allowable At where Ax is small near a shock wave. 

Although very natural in one space dimension, the construction of the Godunov 
scheme above would be difficult to extend to multiple dimensions. We therefore 
consider an artificial viscosity based on the results of LeRoux [4] and Douglas [5 ]. 
This approach will easily extend to higher dimensions although it gives somewhat 
poorer results in one dimension than does Godunov’s scheme. We explicitly use the 
mapping (2.1) that defined the grid generation scheme to transform (1.1) into an 
equation to be solved on the uniform grid in (& t) space. 

First we point out that there is a slight difference between the following two 
processes: (a) add an artifical diffusion to (l.la) and then transform using (2.1), and 
(b) transform (l.la) using (2.1), and then add an artificial diffusion term. The latter 
process leads more directly to an indication of what artificial diffusion to add, while 
the former yields a scheme giving better computational results. We first pursue (a) 
and then appeal to (b) for the exact diffusion term. 

We assume an artificial diffusion of the form 

u, + u-(u)>, = (g%>x (3.3) 
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and then transform using (2.1) to obtain (in conservation form [ 341) 

u,+ [w,~)l,=o (3.4) 

where 

and 

Equation (3.4) is almost of the same form as (l.la) except that F depends on c in 
addition to U (we consider x, to be a function of r once the grid is determined). A 
conservative numerical scheme for Eq. (3.4) (with g = 0) possesses a natural inter- 
pretation as a “cell balance” where xIu represents the amount of u in a cell of size Ax 
and the extra flux terms involving x, are due to the motions of the cell sides. Indeed, 
the Godunov scheme (3.2) can be readily interpreted as an approximation method for 
(3.4). As before, let uJ+,,, represent an approximate value for 24 in x7 < x < x,1+, . Let 
(3.4) be approximated by 

where 

F.= q [‘I+ l/Z + uj- l/21 + + [f(“j+ 112) +f(U,j- l/2)] J 

- g j  
[ 

UjtI/2- uj-1/2 

xjt1/2 -xj-1/2 1. 

Here we have written 

U 
ujt1/2= - i 1 where (Xg)j+1/2 = 

Cxj+ 1 -xj> 

xI jt1/2 
Ar 

and xj+ ,,2 = i(xj + xj+ i). W e note that it is easy to treat (3.4) in linearized implicit 
“delta” form [35]. However, implicit schemes are extremely diffusive at large CFL 
values which would defeat our present purpose. We therefore consider only an 
explicit scheme. 
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It remains to choose the artificial diffusion term g. To do so we think of the 
transformation of (3.3) into (3.4) with g = 0 and ignore the dependence of F on l. 
Our previous experience with artificial diffusion suggests that we consider 

with 

ur + F, = W,), 

Noting the difference between u and U, we therefore choose 

gj= ( x~+ l/2 - xj-1/2 1 

2 
max 

LE(U,-I/Z. Uiil/d 
I -xt j  +f ‘tz>l 

by analogy with the results of LeRoux [4]. 
We observe that a CFL time step criterion for (3.4) would be 

lF’( I-x, +f’I As -Z.Z 
A< 

l-x, +f’lA~ < I 
xt At Ax 

which is in accord with the time step considerations discussed previously. (In the 
numerical results of Section 4 we use the previous criterion.) 

An alternative solution method would be to project the solution at t” onto the new 
grid and advance the equation on a nonuniform grid that is fixed in time (for each 
step); see [ 191. This approach has two drawbacks. First the allowable time step 
becomes very small because of the small grid spacing near the shock. Also the 
projection introduces additional numerical diffusion into the solution, degrading the 
results. 

4. COMPUTATIONAL RESULTS 

Before discussing the numerical experiments, we must specify the function w(c) 
that determines the clustering of the grid. The specific form of the clustering function 
depends on both the norm in which a “good” approximate solution is sought and the 
characteristics of the underlying numerical solution technique. The error measure we 
wish to use is the L ’ error 

E = 1 ’ 1 z.+,(x) - u,(x)1 dx, 
0 

the natural norm for hyperbolic conservation laws. Here, u,, is the piecewise constant 
approximate solution (consistent with the underlying difference schemes) and ZJ, is the 
exact solution. Approximation theory considerations (although not precisely 
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PROBLEM A--GODUNOVm-21PTS--FIXED GRID 

PROBLEM A--GODUNOV--2lPTS--ADAPTIVE 

- exact 

* computed 

3 
B 
d 

FIGURE 3 
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PROBLEM A--2lPTS--ADAPTIVE GRID MOTION 

FIG. 3-continued 

519 

applicable here because of the presence of shock waves) indicate that w(c) should 
look like u:. Numerical experiments showed that the method performed better when 
w(l) = ] ug ] . This definition of w, using a finite difference of u,, to approximate uI and 
scaling so that w lies between 0 and 1, was used in all of the numerical experiments. 

We apply our adaptive grid methods to solve (1) with 

f(u)= ldL 
u2 + cf(1 - U)2’ 

For this choice off, (1) describes two-phase immiscible flow of oil and water in a 
linear reservoir in the absence of diffusive (capillary pressure) effects [36]. Here u 
represents the saturation of water and a is the mobility ratio of oil to water, taken 
here to be 0.25. We consider three different sets of initial and boundary data: 

Problem A 

u{(x) = e-‘O”, o<x< 1 

u(0, t) = 1 

0 < t < 0.343 
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oona, FM A--G~~~~~N~~V--~~PTS--FIXED GRT" 

) t=0.343 

I 
:: .-*A....-' 
"o'.oo 0.12 0.25 0.37 0.50 0.62 0.75 0.07 1.00 

4a X 

- exact 

A comouted 

PROBLEM A--GODUNOV--4lPTS--ADAPTIVE 

- exact 

Q computed 

FIGURE 4 
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PROBLEM A--4lPTS--ADAPTIVE GRID MOTION 

FIG. k-continued 

Problem B 

z&x) = 1 x=0 
=o O<x<l 

u(0, t) = 1 

0 < t < 0.4288 

Problem C 

- 

581 

00 

u:(x) = exact solution for Problem B at time 0.1 

u(0, 1) = 1 

0 < t < 0.4288 

We stop all computation before any significant disturbance reaches the right 
boundary x = 1. To assess the accuracy of our computational results, we obtain the 
“exact” solution for Problem A by running Godunov’s methods on very fine uniform 
grids until numerical convergence is obtained. The exact solutions for Problems B 
and C are simply the Riemann problem solutions evaluated at the final time. We will 
present graphical results for Problems A, B, and C, and numerically compute errors 
for Problems B and C. 

The initial grids were obtained by repeated application of the grid generation 
algorithm of Section 2. The process was iterated until the change in the grid became 
small. Unless otherwise noted, the parameters in the adaptivity scheme were set to 

581/52/3-II 
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PROBLEM B--GODUNOV--2lPTS--FIXED GRID 
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FIGURE 5 
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PROBLEM B--2lPTS--ADAPTIVE GRID MOTION 
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FIG. S-continued 

&, = 10 and 1, = 20. As discussed later, this choice of the parameters gives typical 
but nonoptimal results. All runs were made at CFL = 1 and the size of the final time 
step was adjusted to exactly reach the final time. 

For Problem A we show in Figs. 3a and b the exact solution at various times 
compared with the computed solution using Godunov’s scheme with 21 grid points. 
Results are shown for both fixed and adaptive grids. Each computation took 16 time 
steps. In all of the figures, the piecewise constant computed solution is represented by 
a symbol positioned halfway between grid point locations. Figure 3c shows the 
motion of the adaptive grid where each line represents the trajectory of a grid point. 
It is clear that the qualitative behavior of the grid is correct and that a reasonable 
increase in accuracy has been obtained for a modest cost (i.e., the cost of generating 
the grid). We note that increased accuracy is obtained both at the shock and in the 
strong rarefaction region near x = 0. In Figs. 4a, b, and c we repeat these experiments 
with 41 grid points. In this case the fixed grid computation took 32 time steps 
compared to 58 steps for the adaptive grid. The improved accuracy and shock 
resolution is apparent. 

We next consider Problem B. We expect poorer performance than was obtained for 
Problem A because the adaptive grid cannot resolve the discontinuity in the initial 
data at the boundary. In Figs. 5a and b we show results at the final time using 
Godunov’s method with 21 points on nonadaptive and adaptive grids. Figure 5c 
shows the motion of the grid points, and again we note that small grid blocks follow 
the front. Figures 6a, b, and c show the same experiments with 41 grid points. For 
both of these cases (and others), the L ’ error is displayed in Tables Ia and b. As 
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PROBLEM 6--GOOUNOV--4lPTS--FIXED GRID 
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PROBLEM B--GOOUNOV--4lPTS--ADAPTIVE 

- exact 

o computed 

00 
X 

FIGURE 6 
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PROBLEM B--4lPTS--ADAPTIVE GRID MOTION 

0.12 0.25 0.37 0.50 0.62 0.75 0.87 
X 

PROBLEM B--GRID MOTION WITH LAMBDA B = 0 

100 

FIG. &-continued 
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TABLE Ia 

Problem B: Fixed Grid Godunov 

Grid points Time steps Error 

11 10 0.0457 
21 20 0.028 1 
41 40 0.0173 
81 80 0.0103 

expected, we see essentially linear convergence. We note that approximating a 
function with piecewise constants induces a limitation on how small the error can be 
made. For this problem the best approximation of the final solution by piecewise 
constants on an arbitrary grid yields errors of about 0.007 and 0.003 with 21 and 41 
points, respectively. 

We next consider the effects of varying the grid generation parameters II, and 1,. 
The L’ errors obtained with the Godunov scheme for Problem B using various 
choices of Aa and 1, are displayed in Tables II and III for 21 and 41 grid points, 
respectively. Also shown is the number of time steps necessary for each calculation. 
We can see that the results presented in Figs. 5a-b and 6a-b using the “default” 
values of A, = 10, 1, = 20 can be improved by about a factor of 2. This is accom- 
plished by choosing larger values of A,, resulting in a more accurate solution because 
grid points are more closely clustered at the front. However, such small grid spacing 
requires very small time steps unless Lb is chosen appropriately. If 1, is too large, the 
grid cannot adequately follow the front and the error becomes larger. Alternatively, if 
J,, is too small, there is a lot of grid jerkiness and the taking of large time steps near 
the front is inhibited. In Fig. 6d we show the jerky grid motion obtained with 1, = 10. 
Lb = 0. 

TABLE Ib 

Problem B: Adaptive Grid Godunov 

Grid points 

21 
41 
81 

Time steps 

26 
57 

150 

Error 
- 

0.0176 
0.0072 
0.0038 
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TABLE II 

Problem B: Adaptive Grid Godunov-21 Grid Points, Error/Time Steps 

20 
0.028 1 0.028 1 0.028 1 0.028 1 

20 20 20 20 

10 0.0104 0.0114 0.0176 0.0224 0.0235 
61 35 26 25 24 

20 0.0095 0.0095 0.0104 0.0130 0.0160 
124 69 43 30 27 

30 0.0092 0.0087 0.0092 0.0099 0.0118 
203 113 69 46 33 

40 0.0095 0.0086 0.0085 0.0088 0.0095 
268 184 101 6r! 49 

10 20 30 40 

TABLE III 

Problem B: Adaptive Grid Godunov-41 Grid Points, Error/Time Steps 

0 10 20 30 40 

0 0.0173 0.0173 0.0173 0.0173 0.0173 
40 40 40 40 40 

10 0.0057 0.0062 0.0072 0.0096 0.0116 
207 122 57 50 48 

20 0.0052 0.0046 0.0049 0.0053 0.0065 
552 341 207 102 59 

30 0.0054 0.0043 0.0037 0.0043 0.0049 
941 585 476 268 151 

40 0.0059 0.0040 0.0040 0.0039 0.004 1 
950 804 756 522 311 
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PAOBLEM C--GOOUNOV--4JPTS--FIXED GRID 
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FIGURE 7 
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PROBLEM C--ART.VIS.--4lPTS--ADAPTIVE 
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X 

FIG. l-continued 

Finally, we consider Problem C. Here, the discontinuity in initial data is interior to 
the domain and can be resolved by the adaptive grid. Figures 7a, b and c and 
Table IV present results for fixed grid Godunov, adaptive grid Godunov and adaptive 
grid-artificial viscosity experiments with 41 points. The modest degradation of results 
using the artificial viscosity scheme is typical and occurs to varying degrees in the 
other problems studied. 

TABLE IV 

Problem C-41 Grid Points 

Method Time steps Error 

Fixed grid Godunov 31 0.0119 
Adaptive grid Godunov 38 0.0060 
Adaptive grid artificial viscosity 49 0.0066 
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5. CONCLUDING REMARKS 

A number of issues regarding this approach need to be addressed. An unfortunate 
aspect of this and many other adaptive grid techniques is the presence of several 
parameters that must be chosen. In particular, the choice of 1, greatly affects the 
performance of the present method. If it is too large, the grid cannot change rapidly 
enough to follow the shock; if it is too small, dramatic increases in the number of 
time steps occur. Once an appropriate value of Lb is determined, it seemingly works 
well for a reasonable class of problems; but, in general, it must be set empirically. 

Perhaps the most interesting aspect of this method is its ability to take large time 
steps in the presence of fine spatial grids. To a great degree this phenomenon is an 
artifact of considering a single conservation law. For systems of equations where 
different characteristic families have widely varying wave speeds (such as in gas 
dynamics) the maximum allowable time step will be substantially reduced. The 
implication of this observation for other types of systems such as those arising in 
petroleum reservoir simulation remains an open question. 

The extension of the adaptive grid generation part of the method to multiple 
dimensions is relatively straightforward. However, solving hyperbolic conservation 
laws in several space dimensions on fixed grids is not well understood; extensions to 
moving grids is by no means easy. 

So far we have not addressed the question of computational cost. Compared to a 
fixed grid method, the major additional computational work comes in determining the 
grid motion, which essentially involves only the evaluation of an error criterion, some 
simple smoothing, and a tridiagonal system solution. Also, the difference schemes 
become slightly more complicated, and it is a little more difficult to determine 
suitable time steps. However, at least for Godunov schemes, the largest part of the 
work is devoted to solving Riemann problems-and this is no more difficult (in 
general) for moving grids than it is for fixed grids. 

We also note that, for a comparable amount of work, our adaptive grid 
computations show only a modest increase in accuracy over the corresponding fixed 
grid results. Furthermore, the clustering of the grid near the shock in the displayed 
results is not overly dramatic (though it can be made more so by adjusting 
parameters). The problem is not the adaptive grid method; rather, it is the underlying 
nature of the approximating schemes that are based on piecewise constants. 
Accurately approximating a smoothly varying region of the solution with piecewise 
constants requires a large number of grid points. This suggests that the adaptive 
method would be more successful if used with a higher-order numerical scheme such 
as higher-order Godunov methods based on discontinuous linear approximate 
solutions. This idea will be pursued more fully in subsequent work. 
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